Курсар - Дипломная, курсовая, реферат на заказ
Служба спасения для студентов (18+)

Математическое и имитационное моделирование(Щюкина) Тест 2 МЭСИ без ответов

  1. Адекватность математической модели и объекта это…

 

  1. В простейшем потоке с интенсивностью ? вероятность того, что в промежуток времени t попадет ровно k событий, находится по формуле

 

  1. В простейшем потоке число поступивших заявок m за промежуток времени t подчиняется

 

  1. Декомпозиция это …

 

  1. Детерминированная модель – это

 

  1. Для простейшего потока с интенсивностью ? длина промежутка между соседними событиями распределена по

 

  1. Изменение состояния объекта отображается в виде …

 

  1. Имитационное моделирование – это …

 

  1. Какая форма математической модели отображает предписание последовательности некоторой системы операций над исходными 
  2. данными с целью получения результата:

 

  1. Математической моделью объекта называют…

 

  1. Модель объекта это…

 

  1. Непрерывно-детерминированные схемы моделирования определяют…

 

  1. Ординарный стационарный поток однородных событий с последействием, в котором промежутки времени между последовательными поступлениями заявок представляют собой независимые случайные величины, подчиняющиеся закону распределения, называется

 

  1. Основная функция модели это:

 

  1. Основными методами моделирования случайных величин являются

 

  1. Планирование эксперимента необходимо для…

 

  1. Под моделированием случайной величины понимают

 

  1. Поток событий – это

 

  1. Пропускная способность системы массового обслуживания характеризуется

 

  1. Процесс, протекающий в физической системе, в котором для каждого момента времени вероятность любого состояния системы в будущем зависит только от состояния системы в настоящий момент и не зависит от того, каким образом система пришла в это состояние, называется

 

  1. Свойство, при котором модели могут быть полностью или частично использоваться при создании других моделей

 

  1. Случайную величину y, подчиненную нормальному закону распределения, можно смоделировать из равномерно распределенной 
  2. случайной величины x с помощью функционального преобразования

 

  1. Случайную величину y, подчиненную показательному закону распределения, можно смоделировать из равномерно распределенной случайной величины x с помощью функционального преобразования

 

  1. Случайную величину y, подчиненную равномерному закону распределения на [a, b], можно смоделировать из равномерно распределенной случайной величины x с помощью функционального преобразования

 

  1. Случайный процесс представляет собой

 

  1. Состояние объекта определяется …

 

  1. Стационарный случайный поток без последействия, в котором заявки поступают поодиночке, называется

 

  1. Точка бифуркации это…

 

  1. Фазовое пространство определяется …

 

  1. Эффективность математической модели определяется …

 

Сколько стоит учебная работа на заказ?